Bacteriostatic action of streptomycin on ribosomally resistant mutants (rpsL) of Salmonella typhimurium.

نویسندگان

  • R O Fernández
  • D N Antón
چکیده

Incubation of streptomycin-resistant (rpsL) mutants of Salmonella typhimurium in alkaline nutrient medium containing streptomycin brought about an inhibition of cell growth that was readily reversed by removing the antibiotic or neutralizing the medium. Growth inhibition was maximal at pH 8.2 and a streptomycin concentration of 800 micrograms/ml. A similar amount of dihydrostreptomycin had a negligible effect, and 10-times-higher concentrations of this antibiotic were required to reproduce the streptomycin action. Addition of streptomycin (400 micrograms/ml) to rpsL cells in alkaline (pH 8.2) nutrient medium caused inhibition of protein and DNA synthesis and also, but to a lower degree, of RNA synthesis. This effect on macromolecular synthesis was not due to ATP deprivation, since ATP content rose after addition of the antibiotic. At pH 8.2, the rate of entrance of streptomycin increased fourfold with respect to the rate at pH 7.0, leading to a large accumulation of streptomycin into rpsL cells. Uptake of the antibiotic was halted by addition of KCN or chloramphenicol. Equal uptake was obtained with 800 micrograms of dihydrostreptomycin or 400 micrograms of streptomycin per ml, yet the former did not affect cell growth at that concentration. It is concluded that high pH stimulates streptomycin and dihydrostreptomycin uptake by rpsL strains but only streptomycin accumulation causes growth inhibition in cells lacking the high-affinity ribosomal site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Host mutations (miaA and rpsL) reduce tetracycline resistance mediated by Tet(O) and Tet(M).

The effects of mutations in host genes on tetracycline resistance mediated by the Tet(O) and Tet(M) ribosomal protection proteins, which originated in Campylobacter spp. and Streptococcus spp., respectively, were investigated by using mutants of Salmonella typhimurium and Escherichia coli. The miaA, miaB, and miaAB double mutants of S. typhimurium specify enzymes for tRNA modification at the ad...

متن کامل

Streptomycin Induced Stress Response in Salmonella enterica Serovar Typhimurium Shows Distinct Colony Scatter Signature

We investigated the streptomycin-induced stress response in Salmonella enterica serovars with a laser optical sensor, BARDOT (bacterial rapid detection using optical scattering technology). Initially, the top 20 S. enterica serovars were screened for their response to streptomycin at 100 μg/mL. All, but four S. enterica serovars were resistant to streptomycin. The MIC of streptomycin-sensitive ...

متن کامل

A Suitable Streptomycin-Resistant Mutant for Constructing Unmarked In-Frame Gene Deletions Using rpsL as a Counter-Selection Marker

The streptomycin counter-selection system is a useful tool for constructing unmarked in-frame gene deletions, which is a fundamental approach to study bacteria and their pathogenicity at the molecular level. A prerequisite for this system is acquiring a streptomycin-resistant strain due to rpsL mutations, which encodes the ribosomal protein S12. However, in this study no streptomycin resistance...

متن کامل

Ribosomal protein S12 and aminoglycoside antibiotics modulate A-site mRNA cleavage and transfer-messenger RNA activity in Escherichia coli.

Translational pausing in Escherichia coli can lead to mRNA cleavage within the ribosomal A-site. A-site mRNA cleavage is thought to facilitate transfer-messenger RNA (tmRNA).SmpB- mediated recycling of stalled ribosome complexes. Here, we demonstrate that the aminoglycosides paromomycin and streptomycin inhibit A-site cleavage of stop codons during inefficient translation termination. Aminoglyc...

متن کامل

Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria.

In the absence of the selecting drugs, chromosomal mutations for resistance to antibiotics and other chemotheraputic agents commonly engender a cost in the fitness of microorganisms. Recent in vivo and in vitro experimental studies of the adaptation to these "costs of resistance" in Escherichia coli, HIV, and Salmonella typhimurium found that evolution in the absence of these drugs commonly res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 31 10  شماره 

صفحات  -

تاریخ انتشار 1987